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We determine, for a generic dissipative hyperbolic system of balance laws, an upper bound such that
for shock velocity greater than this limit no continuous shock-wave-structure solutions may exist. These
general results are applied to the old and open problem of shock waves in classical and relativistic none-
quilibrium thermodynamics. In this context, for the macroscopic theories of the extended thermo-
dynamics related to the moment Grad procedure for the Boltzmann equation we can prove that, in con-
trast with a recent paper [D. Jou and D. Pavon, Phys. Rev. A 44, 6496 (1991)], this upper bound for criti-
cal Mach numbers is not influenced by adding other nonlinear terms. Moreover, taking into account the
results of Weiss (Doctoral dissertation in Physics, Technical University Berlin, 1990), we can verify that
our critical upper bound oscillates when the number of moments is increased. Therefore we conclude
that the critical Mach number does not increase if we also consider more and more moments. As at the
present the experiments do not put in evidence, also for high Mach numbers, a subshock formation in
the shock structure, the natural conclusion of our result is that the shock thickness problem is not in the
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range of any hyperbolic continuum theory compatible with the Boltzmann equation.

PACS number(s): 47.40.Nm, 05.70.Ln

I. INTRODUCTION

The problem of giving a satisfactory explanation about
the behavior of the thickness (of order of mean free path)
of shock-wave structure for increasing Mach numbers,
using a continuum model, is an old question. As is well
known, the classical parabolic models such as Navier-
Fourier or Burnett do not predict satisfactory results [1]
compared with the experiments [2], while the hyperbolic
models as the 13-moment Grad equations or the
equivalent continuum models of extended thermodynam-
ics [3—5] do not admit continuous solutions after a very
small critical Mach number (subshock formation) [6,7].
In this last case, recently Jou and Pavon [8], taking into
account that the previous hyperbolic models are linear in
the nonequilibrium variables as heat flux and shear stress,
have conjectured, resuming a previous opinion of Anile
and Majorana [7], that for increasing critical Mach num-
ber it is necessary to add nonlinear terms in these vari-
ables. Another natural conjecture is that the critical
Mach number increases and the thickness behavior be-
comes more satisfactory if one considers in the
Boltzmann equation more and more moments instead of
the usual 13 moments. This idea is sustained by similar
problems as the phase velocity in the limit of high fre-
quencies or in the light scattering in which it was neces-
sary to consider more than 13 moments to obtain a good
agreement with the experimental data [9,5].

The main goal of this paper is to prove that both the
previous conjectures are not true. For this aim it is
necessary to understand the mathematical general
reasons of the breakdown of shock-wave-structure C'
solutions for a generic hyperbolic dissipative system of
balance laws to which the extended thermodynamics
models belong. Then we are able to deduce a very simple
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upper bound such that for shock velocity greater than
this limit no continuous shock-wave-structure solutions
may exist. The first surprising result lies in the fact that
this quantity is a characteristic of the associated linear-
ized (in the neighborhood of the equilibrium unperturbed
state) equations. Therefore, in the case of extended ther-
modynamics, in contrast with the Jou-Pavon hypothesis,
this upper bound does not change by adding nonlinear
nonequilibrium terms. Moreover, it coincides in the con-
text of moments theory with the smallest characteristic
eigenvalue of the linearized system that is greater than
the sound velocity. Taking into account that Weiss [9]
has evaluated explicitly all the characteristic eigenvalues
of the linear system up to the remarkable number of 5456
moments, we are able to establish that our upper bound
critical Mach number is not a monotonous function of
the moments number but oscillates in the neighborhood
of 1 when the moments number increases. Therefore it is
impossible to get good results adding nonlinear terms, or
considering more and more moments. We conclude that
the behavior of the thickness as a function of Mach num-
ber is not in the range of any continuum nonequilibrium
thermodynamics compatible, in the sense of moments,
with the Boltzmann equation.

On the other hand, as the system of extended thermo-
dynamics is in the form of balance laws, it is always pos-
sible to study shocks without thickness like in the nondis-
sipative case [10]. The shock thickness remains only a
microscopic phenomenon.

II. THE BALANCE LAWS SYSTEM

Let us consider a generic system of N balance laws in
one space dimension:
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dF(u) + 9G(u) =f(u), 1) such that
ot ox a
0
where the densities F, the fluxes G, and the productions liIE u(p)= l“l , (7a)
f are RY column vectors depending on the space variable o
x and time ¢ through the field u=u(x,)ER". . du_
. . ) lim 0, (7b)
In the physical examples, typically in the extended p—otw do

thermodynamics (see Sec. V), M <N equations of (1)
represent conservation laws. Therefore, we suppose that
the system (1) is equivalent to

dV(u) , dP(u)
+ = = 2.
ot ox 0, (2a)
dW(u) , dR(u)
LR e~
3 e glu), (2b)
where V,PERY, while W, R, and g are vectors of RV ~¥:
_ vV _ P _ 0
F=|w|, G=|g|, f=|,

Moreover, we assume that it is possible to consider the
field u constituted by a pair u=(v,w)” (the superscript T
denotes transpose) with vE R¥ and wERY ¥, such that

g(v,0)=0 Vv, g(v,w)#0 Vv, Vw#0. (3)

We call the generic state for which w=0 an equilibrium
state and the N —M components of w characterize the
nonequilibrium state variables.

We require also that the system (1) is hyperbolic in the

time direction and we indicate with A'%(u)
(k=1,2,...,N) the eigenvalues of 9dG(u)/du with
respect to the matrix dF(u)/du, i.e., solutions of
det dG(u) _kaF(u) =0,
du du

The A’s are the characteristic velocities of the system (1)
that, for the hyperbolicity assumption, are all real and
finite. Moreover, we call the system

dV(v,0) i dP(v,0) _
ot dx

obtained by the system (2a) setting identically equal to
zero the nonequilibrium variables w, the equilibrium sub-
system associated with the system (2), and we represent
with ,um(v) (J=1,2,...,M) the corresponding charac-
teristic velocities:

0, (4)

3P(v,0)  aV(v,0) |_

det av B av

0. (5)

Of course, no relation exists, in general, between the
characteristic velocities u/(v) of the equilibrium subsys-
tem and the equilibrium values of the characteristic ve-
locities A¥)(v,0) of the full system.

III. SHOCK-WAVE STRUCTURE

As it is well known, a shock-wave structure is a regular
solution of (1) depending on one variable

u=u(p), @=x—st, s=const (shock velocity) (6)

i.e., a wave solution connecting two constant states [11].
Substituting (6) into (1), we have an ordinary
differential system

dF(u) , 0G(u) | du
— — — — 8
S 5u 3 do f(u), (8)
or, equivalently, from (2)
4 [ —sV(v,w)+P(v,w)]=0, (92)
de
d d _
—s——W(v,w)+——R(v,w)=g(v,w) . (9b)
do do

Taking into account (7b), we obtain from (9b) evaluated
at p—t 0

g(vo,wo)=g(v,w)=0, (10

implying, from (3), that the solutions at infinity are equi-
librium solutions:

wo=w;=0 . (1n
From (9a) the conservation along the process of

—sV(v,w)+P(v,w)=c=const (12)
follows and so, in particular, for p—* o [see (11)]
c=—5V(v(,0)+P(vy,0)=—sV(v,0)+P(v,,0) . (13)

Equation (13) coincides with the well-known Rankine-
Hugoniot compatibility conditions for shocks of the equi-
librium subsystem (4).

From (13), except the trivial solution v,=v; (null
shock) that exists always for all s, it is possible for a fixed
value of v, (unperturbed state) to determine the perturbed
equilibrium state v, as a function of the shock parameter
s [12]:

vi=v(vp,s) . (14)

It is known that an admissible shock (14), solution of (13),
must satisfy the so-called Lax conditions [13]; i.e., in
correspondence with a fixed eigenvalue u of the equilibri-
um subsystem (4) one has

Ho<s<p;, lim v(vys)=v,
S— g

[Lo=plvo), py=pulvp]. (15)

In fluid dynamics the first condition represents the well-
known requirement that the physical shocks are super-
sonic in one side and subsonic on the other one. The
second condition implies that the shock passes through
the null shock and so s =y, is a bifurcation point between
the trivial solution v, =v, and the solution (14). The Lax
conditions guarantee, at least for weak shocks, the ex-
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istence of only one family of solutions (14) for each of the
M ecigenvalues u of (5) [14]. For the following it is impor-
tant to point out that, for the previous considerations, the
shock velocity s satisfies the inequality

s> . (16)

For a fixed value of v, and s the constant vector c in
(12) is determined by the first equality of (13) and there-
fore, at least in principle, it is possible to solve (12) in v:

v=v(w,v,s) . (17)

Inserting (17) in (9b) we obtain a nonlinear ordinary
differential system of N —M equations (depending of
M +1 parameter s and v,)) for the nonequilibrium vector
wERY M a5 function of ¢ vanishing at + .

IV. BREAKDOWN OF THE SOLUTION

In this section, we prove a simple theorem permitting
us to determine an upper bound, easy to evaluate, such
that for shock velocity greater than this limit no continu-
ous shock-wave-structure solutions may exist.

Theorem: We consider a system of balance laws (2) and
we suppose that

max

AL >
k=12, ...,N J

)
max
—ta a0

[Ag=A(vy,0), po=plvy)], (18)

where u,=(v,,0)7 is the unperturbed equilibrium state of
a shock wave structure. For a prefixed eigenvalue
wo€uS’, J=1,2,..., M, of the equilibrium system, we
start from the trivial shock for which s =y, and we in-
crease s satisfying the Lax condition s >y, Then there
exists always a finite critical value s, of the shock velocity
such that a breakdown of the shock-structure solution
happens. In particular, it is impossible to have a C! solu-
tion for

s>%,, (19)

where X is the smallest A{® greater than .

Proof: For a fixed value of the parameter s, at least in a
right neighborhood of u, (weak shocks), it is possible to
apply also in this case for the hyperbolic systems the re-
sult of Kopell and Howard [15] (motivated by the para-
bolic problem) guaranteeing for weak shocks the ex-
istence of a C! solution of (8) satisfying the boundary
conditions (7). Let us now increase s and suppose that,
for a given s, > pu,, there exists still a C! solution u, ()
of (8) connecting the two equilibrium states uy=(v,,0)7
and u,=(v,(v,,5),0)7. Considering (8) and the fact that
the derivative of this solution remains bounded, the ma-
trix

aG(u)_s dF(u)
ou * du

ll=|.|*

must be not singular at least for all &€ ]— w0, + o[ for
which the production f does not vanish. Therefore in
these points all the eigenvalues A, =A[u,(@)] evaluated
in u, are different from s, .
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The impossibility that a characteristic velocity coin-
cides with the shock velocity is surely verified in the limit
@— + oo. In fact, since at + « the production f van-
ishes, the system (8) becomes a linear algebraic homo-
geneous system for the derivative of u. So recalling (7b),
as from (8) it is necessary also in this case that the matrix
(evaluated in u,) preceding the derivative is not singular,
we have s, %A V k=1,2,...,N,i.e., [16]

s, <AL, (20a)

A <s, <A (15K =N), (20b)
or

5, >AN . (20¢)

On the other hand, we are interested in the C! solution
obtained by increasing with continuity s(s > y,) starting
from the trivial case s =, and therefore only one of the
previous inequalities (20a) or (20b) must be true, while
(20c) is impossible taking into account the assumption
(18). We conclude that, if there exists a C! solution of (8)
with boundary conditions (7) satisfying the Lax condi-
tions (15), then

to<s <Xy, (21)

where A, is the smallest of A, appearing in (20a) and (20b)
that is greater than p,. Therefore it is impossible to have
a C! solution when

s>X, . (22)

Important Remarks

Remark 1: As is well known the characteristic eigen-
values evaluated at equilibrium A,, and in particular A,
coincide with the characteristic velocities of the linear
system obtained linearizing the system (1) in the neigh-
borhood of the equilibrium state u,. They also are coin-
cident with the phase velocities of the linearized problem
in the limit of high frequency (see, e.g., [17]). Therefore,
since our problem is fully nonlinear, the critical shock ve-
locity s, (py<s.<X,) may depend on the nonequilibrium
fields, but, according to our result, its maximum value 7\.0
results, on the contrary, independent, i.e., 7&0 does not
change by modifying or adding nonlinear nonequilibrium
terms in w.

Remark 2: We observe that the only exceptional case
in which an upper critical limit is unknown occurs when
the condition (18) is violated (this circumstance has not
been verified, to our knowledge, in the physical applica-
tions until now) 'and we choose as yu the greatest of the
u’s.

Remark 3: We note finally that A, is of immediate eval-
uation. We need only the eigenvalues uf’’ of the equilib-
rium subsystem and the characteristic eigenvalues of the
system (1) A{®) evaluated in the equilibrium state and to
identify the smallest of A" greater than p,. This is very
simple with respect to finding numerically the precise
critical value s, for which the breakdown takes place. In
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the next section we apply these results to the case of ex-
tended thermodynamics.

V. THE EXTENDED THERMODYNAMICS CASE

We have in the three-dimensional case thirteen balance
laws reducing, in one space dimension, to five of the form
(1): three equations, of the form (2a), are the conservation
equations of mass, momentum, and energy and the
remaining two, which are a particular case of (2b), de-
scribe the evolution equations of the heat flux g and the
shear stress o [3,5]:

d d

—_ +__. =

Y ax(pv) 0, (23)

9 O (i o)=

at(pv)+ ax(pv +p—0)=0, (24)

i(pu2+3p)+i(pu3+5pv—2au+2q)=o (25)

ot ox ’

912 2 9 (2 5.4 1 8

ar [3P0 79 | Tox |3 TP T 3oV e
=700, (26)

i(2q+5pv—20v+pu3)+i pu4+5L2—7£B

ot dx P p

=2tvo—T7i9 . (27)

+%qv +v%(8p—50)

We choose as field u€R’ the mass density p, the velocity
in the x direction v, the absolute temperature ®, the one-
dimensional components of heat flux ¢, and the shear
stress 0. Moreover, for a monatomic gas the pressure p
and the internal energy e satisfy the relation
p=2%pe=kp®, while 7, and 7, are positive parameters
related to the heat conductivity and the viscosity
coeflicient [3,5]. As is well known, the previous system
coincides for monatomic gases with the one obtained by
Grad from the Boltzmann equation using 13 moments.

This example belongs to the previous general frame-
work now having

N=5, M=3, v=(p,0,0)7, w=(q,0)T. (28)

The two equilibrium states u, (unperturbed) and u, (per-
turbed) are in, according to the condition (11),

uOE(pO’UOZO) ®0’q0:0, UOZO)T)
r (29)
u =(p,v,,0,,9;,=0,0,=0)".

The values p;, ®,, and v, are related through the well-
known (see, e.g., [18]) Rankine-Hugoniot equations (13)
to po, @y, and depend on the shock parameter M,=s/c,
[with ¢;=1/(5/3)k ®, denoting the sound velocity].

In this case the equilibrium subsystem (4) coincides
with Egs. (23)-(25) when ¢ =0 and o =0, i.e., with the
Euler equations, and so

() —

po'=—co, =0, pg'=co . (30)

Instead, the equilibrium characteristic eigenvalues of the

full system are (see [19,5])
AP=—1.65¢,, AMP=-0.62¢,, A =0,
AP=0.62¢, , AJ’=1.65¢, . (31

Choosing the shock traveling in the x >0 direction, we
have

,.L0=C0 > XO__—)\,E)S):I.6SCO ’ (32)

and therefore C! solutions can exist only for Mach num-
bers such that

1=M,<1.65, (33)
while for
M,>1.65, (34)

C! solutions are forbidden. So we find again, in an im-
mediate way, the well-known Grad result [6,7]. It is in-
teresting to note that the critical Mach number deter-
mined by Grad [6] and Anile and Majorana [7] through a
heavy numerical integration of the system (8) coincides in
this case with our upper limit (34).

As consequence of remark 1 of the preceding section, if
the critical Mach number depends on the nonequilibrium
variables, it is impossible to change its upper limit (34) by
adding nonlinear terms in g or o, in contrast, therefore,
with one of the conjectures of [8]. In our opinion, in Ref.
[8], where a continuum model is considered in the spirit
of the extended irreversible thermodynamics, the ap-
parent increase of the critical Mach number is due to the
fact that the authors in reality modify the system
(23)—(27) also in the linear part of the differential opera-
tor with the consequence that they change the Ay’s too.

In the relativistic case we do not know a precise evalu-
ation of s, but only some general considerations can be
found in the papers [20-22]. Besides, in [22] the authors
deduce for the old Miiller-Israel-Stewart [23] relativistic
theory a maximum upstream Mach number correspond-
ing to the characteristic equilibrium velocities of the
fluid. This last result, obtained in this particular case
also if the system considered by these authors is not in
the form of a balance law system (1), is in perfect agree-
ment with our general result whose validity regards a
generic hyperbolic system of balance laws. In the case of
the modern theory of relativistic fluids developed by Liu,
Miiller, and Ruggeri [4], considering a system of 14 bal-
ance laws and having a precise correspondence with the
14 moments theory arising from the relativistic
Boltzmann equation, Seccia and Strumia [24] have evalu-
ated the characteristic velocities Ay’s and therefore it is a
simple matter to deduce also in this complicated case the
%o such that for s greater than this quantity it is impossi-
ble to have a continuous and differentiable shock-wave-
structure solution. Since the expression of X, is a heavy
formula [24], we consider here only the ultrarelativistic
limit case where

Ho= \/_%C

and the (positive) A, are
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FIG. 1. Dimensionless critical upper bound A,/c, (vertical
axis) vs the moment number (horizontal axis).

7»0=\/_%c R \/_%c , \/_%c R

where ¢ is the light velocity. In this circumstance, C'!
solutions may exist in the interval

Vie<s<yic,

and no C! solution exists for s 2\/_%& This last result

coincides with the value found in [22] using the old model
of relativistic extended irreversible thermodynamics.

VI. MORE AND MORE MOMENTS

As we have pointed out in the Introduction, a natural
question is to ask what happens by considering, in the
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classical context, more than 13 moments. In this case the
conservation laws always remain the usual ones and
therefore p, is still equal to ¢y, the Ay’s changing every
time we increase the moments number. Fortunately,
Weiss [9], studying the problem of the behavior of phase
velocity in the limit of high frequency, has evaluated all
the Ay’s until 5456 moments: therefore it is a simple
matter to establish, for a fixed number of moments, the
minimum of eigenvalues greater than uy=c,. In Fig. 1
we plot our upper bound A,/c, for increasing moments
(take into account that 5456 moments correspond, in the
one-dimensional case, to 256 equations). From Fig. 1 it is
evident that X,/c, oscillates with a small damping over 1.
Therefore, if the moments number increases, we always
have a breakdown of the solution for critical Mach num-
bers a little more greater than 1.

Then, we conclude that in a continuum approach, in-
dependently by the number of variables, it is impossible
to find continuous solutions and only shocks without
thickness (weak solutions) have validity according with
previous similar opinions (see, e.g., [25]) and the assump-
tions that in the continuum limit the mean free path
tends to zero.
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